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A one-dimensional seed-skewness algorithm adapted for X-ray diffraction

signal detection is presented and discussed. The method, primarily designed for

photocrystallographic time-resolved Laue data processing, was shown to work

well for the type of data collected at the Advanced Photon Source and

European Synchrotron Radiation Facility. Nevertheless, it is also applicable

in the case of standard single-crystal X-ray diffraction data. The reported

algorithm enables reasonable separation of signal from the background in single

one-dimensional data vectors as well as the capability to determine small

changes of reflection shapes and intensities resulting from exposure of the

sample to laser light. Otherwise, the procedure is objective, and relies only on

skewness computation and its subsequent minimization. The new algorithm

was proved to yield comparable results to the Kruskal–Wallis test method

[Kalinowski, J. A. et al. (2012). J. Synchrotron Rad. 19, 637], while the processing

takes a similar amount of time. Importantly, in contrast to the Kruskal–Wallis

test, the reported seed-skewness approach does not need redundant input data,

which allows for faster data collections and wider applications. Furthermore, as

far as the structure refinement is concerned, the reported algorithm leads to

the excited-state geometry closest to the one modelled using the quantum-

mechanics/molecular-mechanics approach reported previously [Jarzembska,

K. N. et al. (2014). Inorg. Chem. 53, 10594], when the t and s algorithm

parameters are set to the recommended values of 0.2 and 3.0, respectively.

1. Introduction

Objective determination of whether the data contains signal,

and, if so, its proper detection and separation from noise,

constitutes a general problem in experimental science. Among

others, it is a very important issue in processing of diffraction

data in crystallography. Although a lot has been done with

regards to this matter, especially involving standard crystal-

lographic experiment outcomes (Winter et al., 2018), in some

more specific cases, new efficient, i.e. robust and fast, solutions

for the data processing are still welcome. Such tools, for

instance, would be desirable for processing small-molecule

laser-pump/X-ray-probe time-resolved (TR) diffraction data,

in which a large part of important signal is rather weak and

datasets are usually large.

The Laue diffraction method (Amorós et al., 1975) has been

reconsidered years after the pioneering experiments (Frie-

drich et al., 1912, 1913), not only as far as neutron diffraction is

concerned (Keen et al., 2006; O’Dell et al., 2016; Ouladdiaf et

al., 2011) but also due to the development of TR X-ray

diffraction techniques, in which it has some particular

advantages over monochromatic methods (Coppens, Bene-
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dict, et al., 2010; Ren et al., 1999). The approach has been

successfully used to elucidate the dynamics of proteins in

crystals (Schmidt, 2017; Šrajer & Schmidt, 2017) and, more

recently, to small-molecule systems in order to determine

subtle structural changes occurring in crystals upon light-

induced electronic excitation (Trzop et al., 2014; Jarzembska et

al., 2014, 2019; Makal et al., 2012; Benedict et al., 2011). Owing

to the increased interest in the method, a number of computer

programs for handling of the X-ray Laue data have been

introduced, such as the Daresbury LAUE software suite

(Helliwell et al., 1989; Campbell, 1995), LAUEVIEW

and PRECOGNITION (Šrajer et al., 2000), LAUEGUI

(Messerschmidt & Tschentscher, 2008) or LAUEUTIL

(Kalinowski et al., 2012, 2011). Furthermore, to circumvent

application of wavelength-dependent corrections to the TR

X-ray Laue data, Coppens et al. (2009) developed the so-

called RATIO method. In this approach, the intensity ratios of

laser-ON and laser-OFF frames (ION=IOFF) are computed for

synchrotron-collected data. Such ratios can be used to esti-

mate the laser-induced temperature rise of the sample

(Schmøkel et al., 2010; Vorontsov & Coppens, 2005), to

compute photodifference maps (Fournier & Coppens, 2014),

or to perform structure refinement using the specific software

(Vorontsov et al., 2010).

Nevertheless, most of the existing procedures for signal

finding and integrating, implemented in the above-mentioned

software (with the exception of LAUEGUI and LAUEUTIL),

utilize two-dimensional profile-fitting techniques (Ren &

Moffat, 1995; Helliwell et al., 1989; Bourgeois et al., 1998). In

practice, this hampers processing of TR data, where spot-

shape variation versus pump–probe delay time is frequently

observed (Collet et al., 2012; Coppens; Benedict, et al., 2010).

Furthermore, the majority of approaches are based on the

predicted spot position. Thus, the processing sequence is

dependent on a priori knowledge of crystal orientation,

determination of which, in the case of Laue diffraction, may

be rather challenging and/or time-consuming. Therefore, the

algorithm presented here deals with the general case of Laue

data processing, where the integration is performed prior to

reflection indexing, and coupled with the statistical approach

of signal detection. Our contribution constitutes an extension

of algorithms presented by Kalinowski et al. (2012) and coded

in the LAUEUTIL software. It is also a part of a wider project

dedicated to facilitating small-molecule laser-pump/X-ray-

probe TR Laue diffraction data processing and analysis.

2. Description of the algorithm

Two already-known approaches have recently caught our

attention, thus constituted inspiration for this contribution:

the orientation-matrix-less signal finding procedure (Kali-

nowski et al., 2012), based on the Kruskal–Wallis (KW) non-

parametric test; and the seed-skewness (SS) method (Bolo-

tovsky et al., 1995; Bolotovsky & Coppens, 1997; Darovsky &

Kezerashvili, 1997) (for more information see the supporting

information). Our algorithm, in general, combines the two

ideas. Is it worth noting that the two-dimensional SS algorithm

was originally applied to experimental charge-density distri-

bution determination (Iversen et al., 1999, 1998) and to TR

Laue X-ray diffraction data (Makal et al., 2011; Kamiński et

al., 2010), whereas a three-dimensional case was tested on a

monochromatic neutron dataset (Peters, 2003).

The entire procedure reported here consists of two parts.

The first part is dedicated to signal detection in a one-

dimensional dataset independently for every pixel on the

detector. The second part covers construction and filtering of

masks for each diffraction frame, and the subsequent intensity

integration. The first part, which encompasses realization

of our algorithm, is described below in detail; the respective

flowcharts are presented in Figs. 1 and 2.

(i) Selection of pixels containing significant signal. To

determine if any signal is observed in a data vector for a given

detector pixel, the initial value of skewness, �3, init, and its

standard deviation, �(�3, init) (these values are computed for

the entire vector), are computed. It is assumed that the signal

is present in the vector only if

j�3;initj > t � �ð�3;initÞ; ð1Þ
where t (the ‘trust level’) is the first adjustable parameter

(Fig. 1). If this condition is fulfilled, the next steps of the

algorithm are invoked. Otherwise, the procedure for this

particular pixel is aborted, and the background for this pixel is

computed as a simple mean value over all frames.

(ii) Initial background estimation for a particular pixel. At

this stage our procedure diverges from the two- and three-

dimensional cases, where initial background, Binit, is computed

as a mean over the perimeter pixels (assuming initially that

a reflection does not intersect the specified integration box).

Instead, the median over all values for a given vector is

computed. This is because calculating the mean of two peri-

meter values available for a one-dimensional data vector may

introduce bias. In the worst case, the first and last frames could

contain relatively strong signal for the same pixel position, and

thus the initial background would be highly overestimated.

(iii) Construction of the seed. The seed in a vector is

constructed by including every value with intensity higher

than

hBiniti þ s � �ðBinitÞ; ð2Þ
where s (the ‘signal level’) constitutes the second adjustable

parameter (Fig. 1). The seed does not have to be contiguous

(i.e. multiple signals can be found across the vector index). If

no values higher than the specified threshold are found, the

procedure is aborted for this particular pixel, and the back-

ground for this pixel constitutes a simple mean of its intensity

values from all registered frames.

(iv) Skewness evaluation and minimization. Values in a

vector, which are not included in the seed, are used to

compute skewness (�3, Fig. 2); the value of �3 is stored in the

�3, pre variable. Subsequently, the largest intensity value not

present in the seed is found and included in it, and again the

skewness, �3, of the background distribution is computed. If

�3 < �3, pre (i.e. new skewness is not larger than the previous

one), the whole step is repeated and new intensity values are
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moved from the background to the seed (this is the seed-

growing part). However, when �3 > �3, pre (i.e. the skewness

has increased), further actions are aborted and the last-found

intensity value is moved back to the background. Further-

more, the mean background for this pixel is computed as a

mean value of the intensity values not included in the seed. In

the case of our TR datasets the procedure usually reaches the

minimum of the background skewness after several to about

a dozen cycles (the required number of cycles is dataset-

dependent). Finally, it should be noted that essentially only

the skewness-minimization part of the original algorithm is

used, i.e. the grown-seed region does not have to be contig-

uous. Since in our case vectors span the entire angular scan,

implementation of the criterion assuring contiguity of a single

seed, which was well grounded in the two-dimensional case

where a single diffraction spot was considered, is no longer

justified. Such a condition could result in losing relatively

weak signals. For a similar reason, the data contained in the

one-dimensional vector not smoothed in the algorithm

presented.

(v) Mask preparation and integration. Further stages of the

data processing follow the published procedure (Kalinowski et

al., 2012), in which the key steps are (a) construction of two-

dimensional integration masks for each frame, (b) their

filtering using morphological operations (Pierre, 2003), (c)

connected-component labelling to enumerate independent

reflection masks and (d) reflection integration. In the last step,

the integrated intensity, I, of a particular reflection is

computed as

I ¼
X

ði;jÞ
ðIij � hBijiÞ; ð3Þ

where summation covers all pixel coordinate pairs belonging

to the mask at this particular frame, and Bij is the mean

background determined at the stage of signal analysis proce-

dure (note the background may vary over the reflection area).

3. Performance tests on TR Laue data

First, the algorithm performance on single vectors was briefly

examined. As mentioned previously, the t parameter controls

whether to start analysing the vector, whereas the s parameter

modifies the size of the initial seed, which is further expanded

via background skewness minimization. Similarly, as described

by Straasø et al. (2013), a simple model of the diffraction signal

consists of some background level and a peak, summed

together. The peak is modelled by a simple Gaussian function,

g kð Þ ¼ A exp � k � k0ð Þ2=2�2
� �

, where A indicates its height,

and which is centred at a frame k0 (k is the frame index) with

standard deviation �. Both the background and the peak are

Poisson-randomized. As a test example, a relatively narrow

peak was chosen (A = 60 counts, � = 2 frames) and summed
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Figure 2
Second part of the schematic algorithm flowchart, illustrating the seed-
growing procedure based on the skewness minimization. Symbol (iv)
refers to the section of the main text.

Figure 1
First part of the schematic algorithm flowchart presenting the initial
signal detection and seed construction; t (‘trust level’) and s (‘signal
level’) constitute two adjustable parameters in the algorithm. Symbols (i),
(ii) and (iii) or eq. (1) and eq. (2) refer to sections of the main text and
equation numbering, respectively.
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with a background of 20 counts on average (Fig. 3). This

represents a medium-intensity peak found in the Laue data

where reflections occur only on several consecutive frames at

best. In Fig. 3 the large green-edge circles represent the signal

as recognized by the algorithm. It seems that the algorithm

performance is satisfactory, as far as finding and separating

the signal from the background are concerned. However, as

pointed out in the literature (Kalinowski et al., 2012; Straasø

et al., 2013), the derived signal appears to be underestimated.

Hence, two dilations at further stages of the integration mask

evaluation to account for the reflection rim appear to be

justified. Nevertheless, it should be kept

in mind that all masks are constructed

‘perpendicularly’ to the data vector, i.e.

for a given frame in two dimensions.

The dilations used introduce additional

signal to a given data vector only if the

signal was found earlier for the neigh-

bouring pixels on the same diffraction

frame. In this view, careful inspection of

two-dimensional masks is of prime

importance while processing the data.

In order to check if the method

provides reasonable results for real

experimental data, several TR Laue

X-ray datasets collected for a single-

crystal of a model tetranuclear silver(I)–

copper(I) complex (Jarzembska et al.,

2014) on two synchrotron beamlines

[ID09 (Wulff et al., 2002) at the

European Synchrotron Radiation

Facility (ESRF) and BioCARS 14-ID-B

(Graber et al., 2011) at the Advanced

Photon Source (APS)] were selected.

These sets contain both dark-type (only

light-OFF frames, single exposure per crystal orientation) and

laser-type (both light-ON and light-OFF frames, multiple

exposures per crystal orientation) data.

At first, the influence of the algorithm adjustable para-

meters on the final mask was checked. For this purpose,

different s and t parameter values were used to process the

ESRF dark-type dataset. The t-parameter scan with the s value

fixed to 3.0 is shown in Fig. 4. The filtering based on

morphological operations was the same throughout the whole

analysis and followed the sequence of (i) removing of single-

pixel masks, (ii) erosion, (iii) two consecutive dilations and,

finally, (iv) filling out mask holes (if needed). Since the t

parameter controls one of the very first steps of the algorithm,

as expected, the lower its value, the more noise-like spots are

introduced into the raw mask [see Figs. S2 and S3 of the

supporting information]. In such cases, however, the filtering

procedures appear to work very well, yielding clean back-

ground and reasonable spot shapes. Consequently, the algo-

rithm appears to work sensibly for relatively small t values,

such as 0.1–0.3. In contrast, increasing the t parameter over 1.0

results in rather pathological shapes of strong spots (Fig. 4).

Furthermore, weak spots are not detected when t exceeds

0.4. The t value of 0.2 seems to be a rational choice regarding

both time of processing and final results.

In turn, inspection of the s parameter, keeping t fixed to 0.2,

showed it is responsible for introducing noise when its values

are too low (s = 1.0; see Fig. 5). Furthermore, in the vicinity of

strong reflections this noise cannot be attenuated by standard

filtering techniques. Taking s > 2.5 makes the ‘parasite’ spots

disappear, whereas s values greater or equal to 4.0 lead to

severely underestimated weak spot mask areas. Consequently,

setting s between 2.5 and 3.5 seems to be a good compromise

for both strong and weak spots’ shapes.
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Figure 3
Performance of the algorithm on a single Poisson-randomized simulated
data vector (Gaussian peak; A = 60 counts, � = 2 frames; B = 20 counts).
Solid red line – simulated noiseless Gaussian-shape peak; small blue-filled
circles – determined background; large green-edge circles – SS-algorithm-
determined signal.

Figure 4
Filtered masks obtained for the dark-type dataset with various t-parameter settings (with s = 3.0) for
strong (top panels) and weak spots (bottom panels) (filtering sequence: removing of single-pixel
masks, erosion, two consecutive dilations, filling mask holes – this sequence is retained for all
figures). For more details see Figs. S2 and S3.
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In the next step, our algorithm was tested on full laser-type

datasets, as shown in Table 1. The first dataset was collected

at ESRF and the second one at the APS synchrotron. The

performance of the algorithm was examined, with the ‘signal

level’ s parameter set to 3.0, and the ‘trust level’ t parameter

set either to 0.2 or 1.0. The seed-skewness outcomes were

compared with the results obtained by applying the KW

integration scheme, used by LAUEUTIL and also imple-

mented in our code. Numerical parameters of all integrations

are presented in Table 2. As expected, the SS method yields

more reflections with t set to 0.2 than with t = 1.0, which is

about 36% more reflections integrated on average per single

frame in the former case. This result is consistent with the

previous analyses, which showed that establishing higher t

values may result in unsatisfactory evaluation of weaker

reflections. In turn, the KW test provides roughly 10–15%

more reflections compared with the SS method with t = 1.0.

The algorithm dedicated to time-resolved Laue data should

also clearly distinguish between frames collected with and

without laser exposure coming from the same dataset. In the

case of our approach, the derived masks clearly reflect the

differences between the respective light-ON and light-OFF

frames (see Figs. S6 and S7). As such, these outcomes are

similar to those reported in the literature (Collet et al., 2012;

Coppens, Benedict et al., 2010). The differences between light-

ON and light-OFF frames are visible regardless of the inte-

gration scheme used.

Finally, it is valuable to compare various integration

routines through examination of correlation plots of the

respective intensities computed for the same diffraction

dataset. The reflections obtained using two data processing

methods can be matched via simple geometric criterion, i.e.

nearly identical coordinates on the detector surface. In our

case the intensity data derived using the SS method with two

different ‘trust level’ settings, i.e. with t = 1.0 and t = 0.2

applied, were confronted with the KW integration outcomes.

The results are shown in Fig. 6. The obtained picture confirms

that the processed datasets collected at APS and ESRF

behave similarly. In all cases the correlation is very high

(coefficient of determination R2 > 99%). Furthermore,

the stronger the signal, the better the

correlation; the strongest reflections are

clearly integrated almost identically in

the tested approaches. The most notable

differences are observed for the group

of weakest reflections, primarily for

those with raw intensities not exceeding

1000 ADU (arbitrary detector units). In

the case of the first SS integration (t =

1.0), the correlation plots show a rather

symmetric spread for low-intensity

reflections. However, a closer look at

the ratios of SS- versus KW-integrated

spots’ areas indicates that the bottom

part of the plot (with stronger KW

intensities) exhibits larger spots for the

KW method. In contrast, the top part

contains stronger SS reflections of

significantly larger sizes. Quite interest-

ingly, when the KW-test integration is

compared with the SS method with the t

parameter set to 0.2 (suggested to be a

more rational choice by the above
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Figure 5
Filtered masks obtained for the dark-type dataset with various s -parameter settings (with t = 0.3)
for strong (top panels) and weak spots (bottom panels). For more information, see Figs. S3 and S4.

Table 1
Benchmark datasets compared in this contribution.

Dataset source

ID09 at ESRF 14-ID-B at APS

Data type Dark† Laser‡ Laser‡
Number of frames 91 530 800
Angular coverage (�) 91 106 160
Angle increment (�) 1 2 2
Detector Rayonix MX170-HS Rayonix MX340-HS
Detector shape Square Square
Detector dimensions§ (mm) 170 340
Frame dimensions§ (pixels) 3840 3840
Pixel size§ (mm) 44 87
Detector distance (mm) 40 100
2� (�) 0 0

† Dark – ‘normal’ dataset with no laser exposure. ‡ Laser – TR dataset collected
according to the laser-pump/X-ray-probe strategy with light-ON and light-OFF block
data. § Both dimensions (vertical and horizontal) are the same.

Table 2
Total number of reflections integrated (after filtering) with three different
methods for two laser-type datasets (see Table 1).

Values in brackets indicate the average number of integrated spots per frame.

Method

Data set source

ID09 at ESRF 14-ID-B at APS

KW test 132969 (250.9) 147877 (184.8)
SS method (t = 0.2, s = 3.0) 158349 (298.8) 180775 (226.0)
SS method (t = 1.0, s = 3.0) 115295 (217.5) 133664 (167.1)
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analyses), a substantial asymmetry is observed at the low-

intensity region. Clearly, the top part of the spread region is

missing (except for some isolated spots observed only for the

ESRF dataset). At the same time, however, about 7% and

15% more spots match between KW- and SS-integrated sets

for SS with t = 0.2 versus t = 1.0 for ESRF and APS datasets,

respectively. It appears that a great number of weak reflections

moved to the bottom of the reference line (Fig. S8), which

indicates that they are still paired with the KW-determined

spots, but their calculated intensities are different. All this

suggests that the reflection area (i.e. the size of the integration

mask) is a key factor influencing the intensity in this case,

leading to the observed differences in signal-finding and

integrating methods. Furthermore, the importance of reflec-

tion sizes on their intensity is evident when analysing their

absolute values (Fig. S10). Out of weaker reflections (raw

intensities lower than ca. 1000 ADU), the smallest ones (as

integrated with the SS method) exhibit lower intensity than

the ones evaluated with the KW method (regardless of the t

value setting). On the other hand, larger-area low-intensity

reflections seem to have lower intensity than the KW-eval-

uated equivalents when t = 1.0, but not for t = 0.2. However,

this effect is more pronounced for the APS data with respect

to the ESRF, for which it is very weak, thus may not be

general. The other contributing factor,

i.e. the mean background computed for

a given reflection, seems to be very

comparable for the examined data-

processing methods (Fig. S9). Indeed,

the computed mean reflection back-

ground ratios are very close to 1.0,

which are especially well matched for

the APS dataset.

4. Structural refinement result
analysis

Finally, the mutual performance of the

two algorithms was checked via

comparison of the resulting excited-

state structures. Here, the model

copper(I)–silver(I) complex, for which

we determined the full three-dimen-

sional structure of the excited state in

previous work (Jarzembska et al., 2014),

again constitutes the subject of the

analyses. We used the already published

data (now available in the Repository

for Open Data, RepOD; Inter-

disciplinary Centre for Mathematical

and Computational Modelling, Univer-

sity of Warsaw, Warsaw, Poland; doi:

10.18150/repod.6395772) measured with

the Mar165 CCD-type round-shape

detector (diameter: 165 cm; frame size:

2048 pixels in the vertical and horizontal

directions; pixel size: 80 mm in both

directions; Table 3). The four originally examined datasets

were integrated applying both KW and SS methods imple-

mented in our software and further processed using the

overall procedure of the Laue data treatment (orientation

matrix determination, frame-to-frame orientation refinement,

indexing, ratio computation) (Coppens & Fournier, 2015). It is

worth mentioning that our implementation of the KW-test

method is not entirely identical to that in the LAUEUTIL

software used previously. Thus, for the purpose of the current

study the data were processed even more carefully than before

(e.g. rejected detector areas, such as the beamstop, are now

more appropriately defined; spots touching the rejected areas

are not taken for further computations, etc.). The excited-state

structural models were derived with the aid of the program

LASER (Vorontsov et al., 2010). In all cases the same refine-

ment strategy was applied. The measurement geometry and

data processing results are collected in Table 3, the selected

refinement and geometrical parameters of the refined crystal

structure are gathered in Table 4, while the overlay of the

derived metal-core geometries is shown in Fig. 7. It should be

noted that all four datasets shared one crystal-structure model

during the refinement in LASER, whereas only population

parameters and temperature-scale factors were refined sepa-

rately for each case.
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Figure 6
Correlation plots of the SS-integrated (vertical axes) versus KW-integrated spot intensities
(horizontal axes). Two SS integration schemes were used with t = 1.0 (left panels) and t = 0.2 (right
panels) for two laser-type datasets from ESRF (top panels) and APS (bottom panels) are presented.
Plots are coloured with reflection area ratios (SS- over KW-reflection area ratios); intensities are
given in ADU; a logarithmic scale is used; the black solid straight line is the reference line of ISS =
IKW. For more details see the supporting information.
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Generally, the number of raw spots is greater for the SS

method when compared with the KW approach. This effect is

emphasized more when t is set to 0.2 than for t = 1.0. As

shown, the SS method with both examined settings of the t

parameter yields also a larger number of unique reflections

than KW. Quite interestingly, the SS method with t = 1.0 yields

roughly 14% more reflections than KW, whereas with t = 0.2

this excess amounts to about 6%, despite the noted larger

number of raw spots. The processing times are correlated with

the number of detected spots and are comparable for the

analysed methods. Regarding the derived excited states’

populations and geometrical features of the excited-state

species, in all cases the trends are well preserved (Table 4).

The most significant bond-shortening was obtained for the SS

approach with t set to 1.0, while the most moderate one was

again for SS but with t = 0.2. Even though the differences are

not very pronounced, at places they exceed the least-squares-

derived standard deviation error bars, which certainly reflect

better the real accuracy of the refined excited-state geometry

from the TR Laue experiment. Importantly,

the SS method (t = 0.2) yields results closest

to the previously reported theoretically

calculated values within the QM/MM

approach (Table 4).

5. Test on monochromatic data

In addition, our processing method was

briefly tested on the dataset collected using

monochromatic X-ray radiation (Mo K�)

at the laboratory source. The dataset was

retrieved from the RepOD data repository

(doi: 10.18150/repod.7426818). It was

collected using a well known Bruker AXS

APEX II square-array CCD detector and

contains raw diffraction frames from our

previous study on the potassium uridine-50-
monophosphate salt, K(UMP) (Jarzembska

et al., 2017). Example filtered masks are

presented in Fig. 8. Clearly, the obtained

spot shapes look very reasonable when t =

0.2 and s = 3.0 were used, suggesting the

algorithm works robustly for this kind of

data. The integration of the diffraction spots was not carried

out, since our current code is capable of only two-dimensional

frame integration, whereas in the case of monochromatic data

the three-dimensional integration is indispensable. None-
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Table 3
Numerical data showing the geometry and processing results of four TR datasets collected for
the silver(I)–copper(I) complex.

Original datasets retrieved from the RepOD repository (doi: 10.18150/repod.6395772). Values in
parentheses indicate the average number of integrated spots per frame.

Data set No. 1 No. 2 No. 3 No. 4

Number of frames 670 230 455 230
Angular coverage (�) 66 90 180 90
Angle increment (�) 1 2 2 2
Detector distance (mm) 65 50 50 50

Number of raw spots

KW test 325130 (485.3) 89725 (390.1) 199212 (437.8) 106028 (461.0)
SS method (t = 1.0, s = 3.0) 318857 (475.9) 95763 (416.4) 214249 (470.9) 103743 (451.1)
SS method (t = 0.2, s = 3.0) 337216 (503.3) 108858 (473.3) 237717 (522.5) 116493 (506.5)

Number of unique reflections

KW test 3153 3202 5202 3802
SS method (t = 1.0, s = 3.0) 3403 3744 6139 4228
SS method (t = 0.2, s = 3.0) 3237 3533 5539 4014

Table 4
Selected structural and refinement parameters computed for data integrated with three
different methods (see Table 3).

For more numerical parameters see Table S1 of the supporting information. R-factor calculated
on intensity ratios (Coppens, Kamiński & Schmøkel, 2010): R R½ � ¼ P

i Ro;i � Rc;i

�� ��=
P

i Ro;i.
QM/MM results are taken from the original reference of Jarzembska et al. (2014).

Parameter KW test
SS method
(t = 1.0, s = 3.0)

SS method
(t = 0.2, s = 3.0) QM/MM results

dAg1� � �Ag2 (Å) 2.65 (2) 2.59 (2) 2.70 (2) 2.749
dAg1� � �Cu2 (Å) 2.85 (2) 2.80 (3) 2.95 (2) 3.114
dAg2� � �Cu2 (Å) 2.69 (2) 2.66 (3) 2.71 (2) 2.822
Population % (set No. 1) 0.47 (4) 0.37 (3) 0.54 (4) –
Population % (set No. 2) 1.11 (6) 0.87 (4) 1.21 (7) –
Population % (set No. 3) 0.77 (4) 0.61 (3) 0.89 (5) –
Population % (set No. 4) 0.95 (5) 0.75 (4) 1.04 (6) –
R[R] (all data) (%) 2.34 2.46 2.35 –
No. of reflections (all data) 11797 13196 12508 –

Figure 7
Overlay of the tetranuclear copper(I)–silver(I)
metal-core geometry obtained from the tested
approaches (red – KW test, blue – SS with t = 1.0,
green – SS with t = 0.2).

Figure 8
Filtered two-dimensional masks obtained for selected fragments of two
consecutive frames (left and right) for monochromatic in-house data for
the K(UMP) single crystal (SS algorithm with t = 0.2 and s = 3.0). Mask
outlines are marked in black; all panels are drawn with the same intensity
scale. For more details see Fig. S11.
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theless, this result provides a future prospect for implementing

this method also for accurate charge-density or time-resolved

studies.

6. Summary and conclusions

A new one-dimensional seed-skewness algorithm for signal

detection and evaluation in X-ray diffraction data, based on

the skewness-minimization concept, was described and

examined. It was shown that the method enables reasonable

separation of signal from the background in single one-

dimensional data vectors. As the signal appears under-

estimated, which is rather common in many approaches of this

kind, multiple dilations are used to account for this effect.

Importantly, the method is capable of extracting relatively

weak reflections from the background. This is possible

through adjusting of the ‘trust level’ (t) and ‘signal level’ (s)

parameters in the algorithm. It was shown that the parameter

values of t ’ 0.2 and s ’ 3.0 appear to be a reasonable choice.

Otherwise, the procedure is objective and relies only on

skewness computation and minimization, which enable

rational background estimation.

The method is applicable for full TR X-ray Laue diffraction

data, as it is capable of determining small changes of reflection

shapes and intensities resulting from exposure of the sample

to laser light. In addition, the algorithm performance was

compared with the already-published Kruskal–Wallis method,

also implemented in our code. It turns out that the proposed

method generally yields more reflections than the KW test for

the advisable t and s parameters in a comparable time. The

intensities of strong reflections evaluated using the examined

approaches are very alike, whereas weak reflections are more

sensitive to the algorithm setting parameters. Both methods

estimate the background level equally well. It is also worth

noting that the method should work well in various other cases

considered as dynamic structure crystallography, including

studies under external electric field (Fertey et al., 2013;

Hekstra et al., 2016), in which data with and without external

perturbation are collected at various goniometer settings using

an area detector.

Regarding the structure refinement, both methods yielded

comparable excited-state geometries. However, in places there

are statistically significant differences between the evaluated

parameters (taking into account the least-squares-derived

errors), which indicate the level of real accuracy of the TR

Laue method. Nevertheless, the trends in all cases are well

preserved. It should also be noted here that the SS-derived

molecular geometry is in closest agreement with the theore-

tical results obtained using the advanced QM/MM approach,

when the t and s parameters are set to the recommended

values.

The program code used is available from the authors under

request. In principle, it allows future implementation of other

methods of signal finding, such as the variance-mean-equality

method published by Straasø et al. (2013). Currently, paral-

lelization of the entire program is in progress, taking advan-

tage of CUDA programming features in order to speed up the

data processing. This work shall be presented shortly.
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V. & Ranganathan, R. (2016). Nature, 540, 400–405.

Helliwell, J. R., Habash, J., Cruickshank, D. W. J., Harding, M. M.,
Greenhough, T. J., Campbell, J. W., Clifton, I. J., Elder, M., Machin,
P. A., Papiz, M. Z. & Zurek, S. (1989). J. Appl. Cryst. 22, 483–
497.

Iversen, B. B., Darovsky, A., Bolotovsky, R. & Coppens, P. (1998).
Acta Cryst. B54, 174–179.

Iversen, B. B., Larsen, F. K., Pinkerton, A. A., Martin, A., Darovsky,
A. & Reynolds, P. A. (1999). Acta Cryst. B55, 363–374.

Jarzembska, K. N., Hapka, M., Kamiński, R., Bury, W., Kutniewska,
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